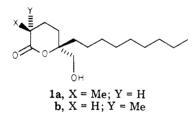
mixture with sodium methoxide in methanol. The reactions shown in Scheme II are involved. Compounds 15, 16, and 17 showed characteristic sharp NMR singlets at δ 4.15, 3.8, and 3.4, respectively. Quantitative determination of these, using acetophenone as the standard (singlet at δ 2.45) led to the yields reported in the discussion. The yield of 15 represented the yield of 14; and the yield of 16, over and above that of 15, plus the yield of 17 represented the yield of 12.

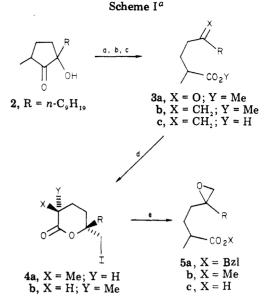
Acknowledgment. This work was supported by Grant F-042 from the Robert A. Welch Foundation, for which the authors are grateful.

Registry No. 1, 479-33-4; 12, 79255-64-4; 13, 30336-09-5; 14, 4888-39-5; 15, 451-40-1; 16, 93-58-3; 17, 52422-24-9.


Synthesis of *dl*-Malyngolide, a Marine Antibiotic δ -Lactone, from 3-Methylcyclopentane-1,2-dione

Sigeru Torii,* Tsutomu Inokuchi, and Kazumi Yoritaka

Department of Industrial Chemistry, School of Engineering, Okayama University, Okayama, Japan 700


Received June 1, 1981

Previous studies of the electrooxidative cleavage of α hydroxycycloalkanones in our laboratory have provided examples of the preparation of oxoalkanoates.¹ The possibility of 5-oxoalkanoates prepared by the electrolysis of α -alkyl- α -hydroxycyclopentanone to form the corresponding δ -lactones has spurred investigation into their use as a synthon of dl-malyngolide synthesis.²

Most syntheses of malyngolide 1a have focused on construction of the δ -hydroxymethyl δ -lactone moiety. Recently, two papers have reported the synthesis of 1a: one involves the elegant, asymmetric synthesis of 1a from (S)-2-hydroxy-2-nonyl-6-heptanal by using (S)-2-(anilinomethyl)pyrrolidine as an auxiliary reagent;^{3a} the other was the first example of the synthesis of dl-malyngolide, the procedure of which has inherent limitations for obtaining δ -hydroxymethyl δ -lactone 1a due to the acid-catalyzed isomerization of the epoxy acid.^{3b} This paper deals with the efficient synthesis of dl-malyngolide 1a, which involves the electrosynthesis of methyl 2-methyl-5-oxotetradecanoate 3a leading to 1a and the novel procedure for the construction of the δ -hydroxymethyl δ -lactone moiety of 1a.

The electrooxidation of 2-hydroxy-5-methyl-2-nonylcyclopentanone 2, obtained by the reaction of sodium 3-methylcyclopentane-1,2-dionoate with nonylmagnesium bromide,⁴ at 20 V $(1.8-7.7 \text{ mA/cm}^2, 3.6 \text{ F/mol of elec-})$

 a a, -2e, MeOH-LiClO₄-(Pt) (93%); b, (Ph)₃PCH₂ (89%); c, KOH-H₂O (91%); d, I₂-KI-aqueous NaHCO₃ (92%); e, BzlOK-DMF (86%).

tricity) with platinum electrodes at room temperature in a divided cell afforded the cleavage product **3a** in 93% yield (Scheme I). Treatment of **3a** with methylenetriphenylphosphorane gave an unsaturated ester **3b** in 89% yield.

In order to prepare the δ -hydroxymethyl δ -lactone moiety of 1a, we examined Lewis acid-catalyzed isomerization of benzyl 5,6-epoxy-5-nonylhexanoate 5a. Iodolactonization of 3c, prepared by hydrolysis of 3b, under a kinetically controlled condition (I₂-KI-NaHCO₃) at 10 $^{\circ}C^{5}$ gave a mixture of 4a (61%) and 4b (31%). Attempted replacement of iodine of 4 by treatment with silver trifluoroacetate failed.⁶ Alcoholysis of 4 with potassium benzyl oxide in DMF provided the benzyl ester 5a in 86% yield. Lactonization of 5a by treating with boron tribromide at -60 °C for 1 h furnished a 1:1 mixture of 1a and its C-2 epimer 1b in 92% yield as the result of hydrolysis of benzyl ester and subsequent intramolecular attack of carboxylate on the epoxy group.⁷ However, either the lactonization of 5b with boron tribromide at room temperature for 3 h or the lactonization of epoxy acid $5c^{3b}$ catalyzed by *m*-chloroperbenzoic acid in a refluxing toluene-cyclohexane mixture for 24 h afforded inferior yields of 1a and 1b (32-38%).8

Experimental Section

The boiling points are indicated by an air-bath temperature without correction. IR spectra were determined with a JASCO IRA-1 grating spectrometer. ¹H NMR spectra were obtained with a Hitachi R-24 (60 MHz) spectrometer and ¹³C NMR spectra were determined with a JEOL FX-100 (25.05 MHz) spectrometer. Samples were dissolved in CDCl₃ and the chemical shift values are expressed in δ values (ppm) relative to Me₄Si as an internal standard. Elemental analyses were performed in our laboratory.

Torii, S.; Inokuchi, T.; Oi, R. J. Org. Chem. 1981, in press.
 (2) Cardllina II, J. H.; Moore, R. E; Arnold, E. V.; Clardy, J. J. Org. Chem. 1979, 44, 4039.

^{(3) (}a) Sakito, Y.; Tanaka, S.; Asami, M.; Mukaiyama, T. Chem. Lett.
1980, 1223. (b) Babler, J. H.; Invergo, B. J.; Sarussi, S. J. J. Org. Chem.
1980, 45, 4241. (c) Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S. Ibid. 1981, 46, 2439.

⁽⁴⁾ Carlson, R. G.; Prabhu, A. V. J. Org. Chem. 1974, 39, 1753.

⁽⁵⁾ Barthlett, P. A.; Myerson, J. M. J. Am. Chem. Soc. 1978, 100, 3950. (6) After the manuscript was submitted, the successful conversion of iodo lactone 4 to the corresponding hydroxy lactone 1 (91% yield) by use of mercury(II) perchlorate in aqueous dimethoxyethane is reported; see

ref 3c. (7) The C-2 epimer 1b can be epimerized to an approximate 1:1 mixture of 1a and 1b on treatment with t-BuOK in Me₂SO; see ref 3a.

⁽⁸⁾ In contrast to the difficulty in obtaining the δ -lactone 1 from 5,6epoxyalkanoic acid, 4,5-epoxyalkanoic acid can smoothly lead to γ -hydroxymethyl γ -lactone: Collum, D. E.; McDonald, J. H.; Still, W. C. J. Am. Chem. Soc. 1980, 102, 2118.

3-Methyl-1-nonyl-2-oxocyclopentan-1-ol (2). A mixture of 3-methylcyclopentane-1,2-dione (434 mg, 3.87 mmol) and NaH (191 mg, 7.96 mmol) in ether (12 mL) was stirred at room temperature for 3 h until H₂ evolution ceased and to this solution was added a solution of nonylmagnesium bromide prepared from 1-bromononane (1.63 g, 7.87 mmol) and magnesium (230 mg, 9.47 mmol) in ether (5 mL). The refluxing mixture was stirred for 48 h, quenched with cold 10% NH₄Cl, acidified with 10% HCl, and extracted with AcOEt-hexane (1:1). The usual workup gave 785 mg (84%) of 2 as an oil, after chromatography (SiO₂, hexane–AcOEt 20:1): bp 125 °C (0.26 mm, decomposition on distillation); IR (neat) 3420 (OH), 1738 cm⁻¹ (C=O); ¹H NMR δ 0.89 $(br t, 3, CH_3)$, 1.14 $(d, J = 6 Hz, 3, CH_3)$, 1.28 $(br s, 12, CH_2)$, 1.40-2.40 (m, 9, CH₂, CH), 2.33 (br, 1, OH). Anal. Calcd for C₁₅H₂₈O₂: C, 74.95; H, 11.74. Found: C, 74.83; H, 11.97.

Methyl 2-Methyl-5-oxotetradecanoate (3a). A solution of 2 (410 mg, 1.71 mmol) and LiClO₄ (500 mg) in MeOH (20 mL) was charged in a H-type of anode compartment. To the cathode compartment was added a solution of LiClO₄ (250 mg) in MeOH (15 mL). The mixture was electrolyzed with platinum electrodes $(1.5 \times 2.0 \text{ cm}^2)$ under a constant applied voltage of 20 V (1.8-7.7) mA/cm²) at room temperature. After 3.6 F/mol of electricity passed, the anode solution was concentrated and the residue was taken up in AcOEt-benzene (1:1). The extracts were worked up in the usual manner and the following chromatography (SiO₂, hexane-AcOEt, 10:1) gave 425 mg (93%) of **3a**: bp 173-176 °C (0.03 mm); IR (neat) 1732 (COO), 1710 cm⁻¹ (C=O); ¹H NMR δ 0.90 (br t, 3, CH_3), 1.14 (d, J=6 Hz, 3, CH_3), 1.27 (br s, 16, CH_2), 2.10-2.67 (m, 5, CH₂CO, CHCO), 3.59 (s, 3, OCH₃). Anal. Calcd for C₁₆H₃₀O₃: C, 71.07; H, 11.18. Found: C, 71.15; H, 11.39.

Methyl 2-Methyl-5-methylenetetradecanoate (3b). To a solution of 3a (278 mg, 1.03 mmol) in benzene (1 mL) was added a solution of methylenetriphenylphosphorane prepared from methyltriphenylphosphonium bromide (708 mg, 1.98 mmol) and NaNH₂ (238 mg, 6.1 mmol) in benzene (10 mL). The mixture was stirred at room temperature for 12 h and worked up in the usual manner to give 246 mg (89%) of 3b, after chromatography (SiO₂, hexane-AcOEt 20:1): bp 155-157 °C (2 mm); IR (neat) 3060 (H₂C=C), 1735 (COO), 1637 cm⁻¹ (C=C); ¹H NMR δ 0.91 (br t, 3, CH₃), 0.93–2.55 (m, 21, CH₂, CH), 1.14 (d, J = 6 Hz, 3, CH₃), 3.59 (s, 3, OCH₃), 4.65 (br s, 2, H₂C=C). Anal. Calcd for C₁₇H₃₂O₂: C, 76.06; H, 12.02. Found: C, 76.26; H, 12.20.

2-Methyl-5-methylenetetradecanoic Acid (3c). Hydrolysis of 3b (104 mg, 0.39 mmol) in MeOH (2 mL)-KOH (105 mg, 1.81 mmol)- H_2O (0.6 mL) system was carried out at room temperature for 24 h, acidified with cold aqueous 10% HCl, and extracted with hexane-AcOEt (1:2). The usual workup gave 90 mg (91%) of 3c.3b

2,5-trans - and 2,5-cis-5-(Iodomethyl)-2-methyl-tetradecan-5-olides (4a,b). To a solution of 3c (62 mg, 0.244 mmol) in aqueous 0.5 N NaHCO₃ (1.0 mL) was added a mixture of KI (415 mg, 2.50 mmol), I_2 (190 mg, 0.75 mmol), and H_2O (0.6 mL) at 0 °C. The mixture was stirred at 15 °C for 48 h and extracted with ether. The extract was worked up in the usual manner to give 31 mg (33.6%) of 4b (R_f 0.57, Merck PF 254, hexane-AcOEt 20:1) and 59 mg (62.3%) of 4a (Rf 0.49). Physical constants together with elemental analyses of 4a and 4b are as follows. 4b: bp 159-160 °C (0.015 mm); IR (neat) 1735 cm⁻¹ (COO); ¹H NMR & 0.89 (br t, 3, CH₃), 1.29 (br s, 12, CH₂), 1.31 $(d, J = 6 Hz, 3, CH_3), 1.40-2.70 (m, 9, CH_2, CH), 3.35 (br s, 2)$ CH₂I); ¹³C NMR δ 11.7 (t, CH₂I), 14.1 (q, C-14), 17.3 (q, C-2 Me), 22.6 (t, 3C), 25.0 (t), 29.2 (t), 29.4 (t), 29.5 (t), 29.6 (t), 31.8 (t), 35.1 (d), 39.9 (t), 83.7 (s, C-5), 173.7 (s, C-1). Anal. Calcd for C₁₆H₂₉IO₂: C, 50.53; H, 7.69. Found: C, 50.55; H, 7.77.

4a: bp 161-162 °C (0.02 mm); IR (neat) 1735 cm⁻¹ (COO); ¹H NMR δ 0.88 (br t, 3, CH₃), 1.29 (br s, 12, CH₂), 1.26 (d, J = 6 Hz, 3, CH₃), 1.40–2.70 (m, 9, CH₂, CH), 3.50 (br s, 2, CH₂I); ¹³C NMR δ 14.1 (q, C-14), 15.3 (t, CH₂I), 17.2 (q, C-2 Me), 22.7 (t), 23.3 (t), 25.4 (t), 29.2 (t), 29.4 (t), 29.5 (t), 29.7 (t), 30.6 (t), 31.9 (t), 35.1 (d, C-2), 38.7 (t), 83.3 (s, C-5), 173.7 (s, C-1). Anal. Calcd for C₁₆H₂₉IO₂: C, 50.53; H, 7.69. Found: C, 50.41; H, 7.98.

Benzyl 5,6-Epoxy-2-methyl-5-nonylhexanoate (5a). A solution of potassium benzyl oxide prepared from benzyl alcohol (209 mg, 1.93 mmol) and t-BuOK (95 mg, 0.84 mmol) in DMF (2 mL) was added to 4 (151 mg, 0.4 mmol) in DMF (0.3 mL) at 0 °C. The mixture was stirred at room temperature for 24 h, poured into cold aqueous 5% tartaric acid, and extracted. The

workup gave 124 mg (86%) of 5a after chromatography (SiO₂, hexane-AcOEt 5:1): bp 187-189 °C (0.02 mm); IR (neat) 3030, 1735 cm⁻¹ (COO); ¹H NMR δ 0.88 (br t, 3, CH₃), 1.16 (d, J = 6 Hz, 3, CH₃), 1.10–1.85 (m, 20, CH₂, 1.24 (top)), 2.15–2.51 (m, 1, CHCO), 2.52 (s, 2, CH₂O), 5.10 (s, 2, CH₂OCO), 7.30 (br s, 5, PhH). Anal. Calcd for C₂₃H₃₆O₃: C, 76.62; H, 10.06. Found: C, 76.68; H, 10.30.

Methyl 5,6-Epoxy-2-methyl-5-nonylhexanoate (5b). To a solution of **3a** (300 mg, 1.1 mmol) in CH_2Cl_2 (3 mL) was added 80% m-CPBA (299 mg, 1.73 mmol) at 0 °C. The mixture was stirred at room temperature for 6 h and worked up in the usual manner to give 307 mg (98%) of 3b: bp 120-122 °C (0.02 mm); IR (neat) 1732 cm^{-1} (COO); ¹H NMR δ 0.89 (br t, 3, CH₃), 1.10–2.80 (m, 21, CH₂, 1.27 (top)), 1.16 (d, J = 6 Hz, 3, CH₃), 2.38 (m, 1, CHCO), 2.54 (s, 2, CH₂O), 3.66 (s, 3, OCH₃). Anal. Calcd for $C_{17}H_{32}O_3$: C, 71.79; H, 11.34. Found: C, 71.73; H, 11.39.

dl-Malyngolide (1a) and 2-Epimalyngolide (1b). To a solution of 5a (55 mg, 0.15 mmol) in CH_2Cl_2 (1 mL) was added a solution of BBr₃ (153 mg, 0.61 mmol) in $\overline{CH_2Cl_2}$ (0.3 mL) at -70 °C. The mixture was stirred at $-65 \sim -60$ °C for 1 h, quenched with cold water, and extracted with AcOEt. The usual workup gave 19 mg (46%) of 1b (R_f 0.31, Merck F254, hexane-AcOEt 4:1) and 19 mg (46%) of 1a (R_f 0.23) after chromatography (SiO₂, hexane-AcOEt 4:1). Physical constants of 1a and 1b together with elemental analysis 1b are as follows. 1b: bp 144-146 °C (0.01 mm); IR (CCl₄) 3390 (OH), 1728, 1712 cm⁻¹ (COO); ¹H NMR δ 0.89 (br t, 3, CH₃), 1.26 (br s, 12, CH₂), 1.27 (d, J = 6 Hz, 3, CH₃), 1.45–2.20 (m, 8, CH₂), 2.23–2.65 (m, 1, CHCO), 2.83 (br s, 1, OH), 3.57 (br s, 2, CH₂O); 13 C NMR δ 14.1 (q, C-14), 17.2 (q, C-2 Me), 22.7 (t), 23.6 (t), 25.3 (t), 26.3 (t), 29.3 (t), 29.5 (t, 2C), 30.1 (t), 31.9 (t), 35.6 (d, C-2), 36.7 (t), 67.7 (t, C-5 CH₂O), 86.9 (s, C-5), 175.3 (s, C-1). Anal. Calcd for $C_{16}H_{30}O_3$: C, 71.07; H, 11.18. Found: C, 71.13; H, 11.29.

1a: bp 144-146 °C (0.01 mm); ¹³C NMR δ 14.1 (q, C-14), 17.2 (q, C-2 Me), 22.7 (t), 23.2 (t), 25.4 (t), 27.2 (t), 29.3 (t), 29.5 (t, 2C), 30.0 (t), 31.9 (t), 35.2 (d, C-2), 37.7 (t), 67.6 (t, C-5 CH₂O), 86.4 (s, C-5), 175.5 (s, C-1).

Registry No. 1a, 74742-19-1; 1b, 76984-84-4; 2, 79299-93-7; 3a, 76984-85-5; 3b, 76917-12-9; 3c, 74709-66-3; 4a, 76917-13-0; 4b, 76917-14-1; 5a, 79299-94-8; 5b, 79299-95-9; 3-methylcyclopentane-1,2-dione, 79299-96-0; 1-bromononane, 693-58-3.

An Efficient Synthesis of Conjugated Ketene Dithioacetals

R. Karl Dieter

Department of Chemistry, Boston University, Boston Massachusetts 02215

Received May 18, 1981

Ketene dithioacetals conjugated with functional groups have been exploited in a variety of synthetic applications. Conjugated olefin ketene dithioacetals have served as carbonyl umpolung reagents¹ and Diels-Alder dienes.² α -Oxoketene dithioacetals have been previously utilized for the synthesis of heterocyclic compounds,³⁻⁵ Diels-Alder dienes,⁶ and the indirect synthesis of α -tertiary alkyl substituted ketones.⁷ The conjugated ketene dithioacetals contain a masked ester functionality and hold considerable potential as substrates for functional group manipulation and sequential carbon-carbon bond-forming transformations.

- Grobel, B.-T; Seebach, D. Synthesis 1977, 357.
 Carey, F. A.; Court, A. J. J. Org. Chem. 1972, 37, 4474.
 Augustin, M.; Groth, Ch. J. Prakt. Chem. 1979, 321, 215.
 Augustin, M.; Groth, Ch.; Kristen, H.; Peseke, K.; Wiechmann, Ch.;
- J. Prakt. Chem. 1979, 321, 205.
 - Marino, J. P.; Kostusyk, J. L. Tetrahedron Lett. 1979, 2489, 2493.
 Masson, S.; Thuillier, A. Tetrahedron Lett. 1980, 4085.
 - (7) Corey, E. J.; Chen, R. H. K. Tetrahedron Lett. 1973, 3817.